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Abstract. Numerical simulation of constrained dynamical systems is known to exhibit stability problems even when 
the unconstrained system can be simulated in a stable manner. We show that not the constraints themselves, but the 
transformation of the continuous set of equations to a discrete set of equations is the true source of the stability 
problem. A new theory is presented that allows for stable numerical integration of constrained dynamical systems. 
The derived numerical methods are robust with respect to errors in the initial conditions and stable with respect to 
errors made during the integration process. As a consequence, perturbations in the initial conditions are allowed. 
The new theory is extended to the case of constrained mechanical systems. Some numerical results obtained when 
implementing the numerical method here developed are shown. 

1. Introduction 

Mechanical systems can be described by a second-order Ordinary Differential Equation 
(ODE). Solving the ODE yields the time-evolution of the state-variables that represent the 
internal behaviour of the mechanical system. Mechanical systems are often composed of 
subsystems. Instead of deriving an ODE that describes the whole system one can model each 
subsystem separately. However, in this set up relations between subsystems are not 
automatically satisfied. To compensate this, dependencies between state-variables must be 
added to the ODEs that describe the dynamic behaviour of the individual subsystems. The 
dependencies between state-variables are modelled as, additional, constraint equations. The 
combination of ODE and constraint equations gives rise to a Differential Algebraic Equation 
(DAE). The advantage of a DAE description can readily be seen by taking the case where 
subsystems are to be designed; exchanging models for subsystems is a necessity. This is 
clearly easier to do in case of a DAE description compared to the case where a new ODE 
must be derived that describes the complete constrained mechanical system. 

For the evaluation of mathematical models one often has to take resort to simulation 
studies [1]. For simulation studies to be carried out it is necessary to have numerical 
algorithms that allow stable numerical integration. Simulation of dynamical systems de- 
scribed by a set of differential and algebraic equations gives rise to specific stability problems 
with respect to time-integration [2]. In this paper we will concentrate on the numerical 
solution of dynamical systems with equality state-space constraints. 

In the present literature with respect to numerical integration DAEs are characterized by 
their index [3]. The index can be viewed upon as a measure of how far a DAE is from being 
an ODE. Constrained mechanical systems often have an index equal to three. So far, 
index-three problems have resisted efforts at their direct solution by (available) ODE 



316 A . A .  ten D a m  

methods [4]. As a result, for constrained mechanical systems, stable numerical algorithms 
are few and impose restrictions on the kind of constraints that can be simulated [5]. 

Even if the unconstrained system can be simulated in a stable manner the addition of 
constraints leads to unstable numerical behaviour for the chosen formulation. So, it could be 
concluded that the numerical difficulties arise from the additional constraint equation(s). 
However, we will show that not the constraints themselves, but rather the transformation of 
the continuous set of equations to a discrete set of equations is the true source of the stability 
problem. Furthermore, it will be shown that there exists no need to introduce the index 
terminology to characterize difficulties with respect to numerical integration of DAEs. In 
fact, we show that use of the appropriate formulation automatically results in stable 
numerical integration of differential algebraic equations. This result will be extended to the 
case of constrained mechanical systems. It will also be shown that one can use well-known 
and well-documented standard ODE solvers, commonly accepted by engineers, to solve the 
constrained equations of motion in a stable manner. It should be mentioned that a similar 
stabilization technique, for index-one systems with linear, stationary constraints where the 
equations are solved with the aid of the Forward-Euler  integration method, has successfully 
been applied in the area of computational fluid dynamics [6]. 

The remainder of this paper is as follows. In Section 2 the classical formulation and 
numerical solution of constrained mechanical systems is discussed. Also some assumptions 
are stated that are used throughout this paper. In Section 3 a solution to the problem of 
stable numerical integration of constrained dynamical systems is given. A new theory is 
presented that allows stable numerical integration of the corresponding DAEs. The results of 
Section 3 are extended to constrained mechanical systems in Section 4. In that section the 
numerical solution of this kind of systems is discussed. Simulation results are presented in 
Section 5. The conclusions are stated in Section 6. 

2. Classical solution of mechanical systems with equality state-space constraints 

In this section we describe the classical formulation of constrained mechanical systems. 
Details can be found in [7]. Consider a mechanical system that is composed of a number of 
subsystems. Interconnecting the subsystems yields the overall, constrained mechanical, 
system. Let k denote the number of subsystems and let x i ~_ R n' denote the position 
coordinates of subsystem i, and n := Z~_ 1 n i. Then a compact description of the equations of 
motion (where the dot denotes the time derivative) is given by: 

M ( x ) £  : B(x ,  it) + F~ . (2.1) 

Here x represents the positions of all involved subsystems, x [Xlr,.. r r = . ,  xk] , with xi the 
position vector of system i; M represents the inertia matrix of the composed system, 
M = d i a g [ M 1 , . . . ,  Mk], with M i the inertia matrix of system i; B represents the Coriolis, 
gravitational and centrifugal force/torque vector, B [B~, r = . . . ,  Bk] , with B i the Coriolis, 
gravitational and centrifugal vector acting on system i; and F c represents the control 

= F r with F~, the force/torque vector acting on the composed system, F c [ c~ . . . .  , F~rk] r, 
control force/torque vector of system i. 

ASSUMPTION A 
V X  i E Rni: Mi(xi )  is positive-definite, i = 1 - . - k .  
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Assumption A implies that we are dealing with a true ODE in the sense that for each x i an 
ordinary differential equation is present. Later on this assumption will be relaxed. 

If there are no additional restrictions, one is left with k independent systems. Relations 
between subsystems impose restrictions on the composed system. These relations are called 
constraints and are modelled as constraint equations. Usually the constraint equations are of 
lower order than the order of the ODEs that describe the behaviour of the subsystems. For 
instance, the equation 

P(x, t) = 0, (2.2) 

with P: Rn+~---~ R m, m-_< n, t E T, represents a constraint equation on position level. Dif- 

ferentiation of Eq. (2.2) yields: 

C(x, t)Yc : d(x, t) , (2.3) 

where C(x, t) := Px(x, t) and d(x, t) := -P~(x, t). The matrix C is called the constraint 
Jacobian matrix. 

ASSUMPTION B 
V(x, t) E R  "+1 such that P(x, t) = 0: rank(C(x, t)) = m, m -< n. 

Assumption B implies that the constraint Jacobian matrix C has full row-rank, i.e. there are 
no redundant constraints. The constrained dynamical system can be looked upon as a 
dynamical system with its behaviour restricted by the constraints. This restriction now is the 
fundamental source of difficulties in the formulation and numerical solution of constrained 
dynamical systems. If constraint equations can be modelled as in Eq. (2.2) they are called 
holonomic constraints. Constraints as in Eq. (2.3) but not integrable to a form as in Eq. 
(2.2) are called nonholonomic constraints. In this paper we mainly consider holonomic 
constraints. The results, however, can be extended to nonholonomic constraints in a 
straightforward manner with the aid of the results presented in [7]. 

The classical way to formulate the equations that describe constrained mechanical systems 
is by introducing a (classical) Lagrange multiplier, denoted by A. The resulting equations 
then read [7]: 

M £ =  B + F~ + CTA, (2.4a) 

0 = P(x, t).  (2.4b) 

Where, for notational convenience, we have deleted (part of) the arguments. In classical 
mechanics the expression CrA is identified with the constraint force. Note that the constraint 
force is added to an already given formulation. We refer to Eq. (2.4) as the classical 
formulation of constrained mechanical systems. 

In order to find the time-evolution of the state of the system one usually has to take resort 
to simulation studies. The classical way to do this is first to solve the above equations for A, 
second to discretize the resulting equations and third to solve these discrete equations by a 
numerical algorithm. This sequence of steps is known to exhibit stability problems. This can 
best be shown by performing simulations where the discrete equations are obtained in the 
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classical manner. Throughout this paper we will use a simple example, a planar pendulum 
shown in Fig. 1, to illustrate the concepts. 

In Fig. 2 the results of such a simulation are depicted. The initial position and initial 
velocity are chosen such that the constraint equations are not exactly satisfied. The solid line 
represents a part of the unit-circle: the constraint. It can clearly be seen that the simulated 
behaviour (dashed line) does not satisfy the constraint and that the constraint violation 
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Fig. 1. A single planar pendulum modelled as a free falling point-mass that is constrained to a circle with radius l. 
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Fig. 2. The dynamics behaviour obtained from simulations performed in the classical manner (dashed line) and the 
model developed in this paper (solid line). The initial conditions do not satisfy the constraint equations. The solid 
line also represents the analytic solution. It can be seen that the results of the simulation performed in the classical 
manner are far from the analytic solution. 
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increases with time as well. (Details with respect to these simulation results are given in 
Section 5.) 

The example shows that numerical simulation of the classical formulation of a constrained 
mechanical system indeed exhibits severe stability problems. It is very important, however, 
to treat the constraint equations in an accurate and reliable way. Simulation of multibody 
systems is an activity with a long history. As a result several computational procedures have 
been proposed to overcome the stability problems. These include techniques where a 
distinction is made between dependent and independent variables (a solution is sought 
through singular-value-decomposition), equilibrium correction strategies [8], penalty formu- 
lations [9], coordinate partitioning methods [10], predictor/corrector algorithms [11] and the 
differential algebraic approach [12]. Some remarks with respect to the differential algebraic 
approach can be found in the next section. In engineering practice, the constraint stabiliza- 
tion technique presented by Baumgarte [8], is often applied because it is conceptually simple 
and easy to implement. This technique can be derived by looking only at the constraint 
equations. So, the term constraint stabilization is well chosen. Differentiating Eq. (2.2) twice 
yields 

P(x, t) = 0. (2.5) 

From the control literature it is well known that a numerical solution of Eq. (2.5) can be 
unstable; that is, it can lead to values of P and P that are far from the desired value zero. 
From control theory it follows that the modified acceleration equation: 

ib + 2oeP +/32P = O, (2.6) 

is (asymptotically) stable for a > 0 [13]. (The additional terms in Eq. (2.6) can be seen to act 
as a proportional/derivative control with gains equal to 2a and /32.) Baumgarte also 
presented the proportional/integral counterpart, well known from control theory, for the 
asymptotic stabilization of holonomic constraints [14]. 

One problem can readily be seen from the formulation of the stabilization technique: how 
to choose the coefficients a and /3. Since the stabilization term can be interpreted as a 
proportional/derivative control law, it is noted that the use of the stabilization term shifts the 
poles of the system and thus alters the dynamical behaviour of the system. The choice of 
and/3 is merely a matter of how fast we want to damp out the constraint violations. (Large 
values of ~ and 13 lead to high-gain feedback laws.) Note that the choice a =/3 yields a 
critically damped system. It is this choice that is commonly used when Baumgarte's 
technique is applied. In [15] the gains are related to the stepsize with which the numerical 
algorithm is applied. There it is remarked that this particular choice of gains tends to damp 
out constraint violations faster than any other choice, but accumulation of (integration) 
errors cannot be prevented. Furthermore, decreasing the stepsize results in larger gains. As a 
result the damping terms dominate the numerical solution process of Eq. (2.6): they make 
the system become numerically stiff. In spite of this drawback, the constraint stabilization 
technique is often applied since it avoids iterative solution of algebraic constraints and hence 
no additional computation time is necessary. This in contrast to for instance a predictor/ 
corrector algorithm. These algorithms usually require an iteration process to obtain values 
within a certain predefined error level: a number of corrector steps must be applied. This 
iteration process is known to increase computation time considerably. 
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3. Stable numerical integration of dynamical systems described by differential algebraic 
equations: theory 

3.1. Introduction 

Up to now in a DAE approach difficulties with respect to stable numerical integration are 
related to the index of a DAE. An introduction to the notion of the index of a DAE can be 
found in [16]. Several definitions of the index exist, and general agreement is not yet reached 
with respect to the most appropriate one. However, one can say that mechanical systems 
often have the index-three property. So far index-three problems have resisted efforts at 
their direct solution by available ODE solvers. Most of the research with respect to 
numerical algorithms designed especially for DAE systems is dedicated to implicit integra- 
tion methods, more specifically to Backward Differential Formulas [17] and to implicit 
Runge-Kutta methods [18, 19]. Hence finding the numerical solution involves an iteration 
process. 

We show that there exists no need to introduce the index terminology to characterize 
difficulties with respect to numerical integration of DAEs. Hence we do not need to worry 
about which definition of index is best. In fact, we do not use the notion of index at all. 

In order to demonstrate the theory here developed in a straightforward manner, and to 
prevent an iteration process from entering the discussion, we restrict ourselves to numerical 
integration by well-known explicit ODE-solvers. It can be seen, however, that the results are 
also valid in case implicit ODE-solvers are used. 

To show where the actual stability problem originates we will discuss a constrained 
dynamical system, described by the following DAE: 

G(x)£c = B(x) + F ,  (3.1a) 

o = P(x ,  t ) .  (3.1b) 

Here G and B are assumed to be known. F represents the control. Throughout this paper we 
assume that the controls take their value in R", notation F ~  (Rn) r. Note that we allow 
non-linear system equations. In addition we make the following assumption. 

ASSUMPTION A' 
Vx @ R n : G(x) is non-singular. 

This assumption can be seen to be a relaxation of assumption A, and implies that we are still 
dealing with a true ODE in Eq. (3.1a). We consider the system in Eq. (3.1) as the given 
problem formulation: no additional variables are added later on (as done in case of the 
constraint force in the classical formulation of mechanical system). 

3.2. Formulation of  dynamical systems described by a differential algebraic equation 

Given a true ODE (that satisfies a Lipschitz condition) and arbitrary initial conditions a 
unique solution exists. However, in the case of constrained mechanical systems there may 
not be a trajectory that also satisfies the constraints without applying a control law, even if 
the set of initial conditions is consistent with these constraints. In [7] we showed that the 
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freedom offered by control can be used to formulate the equations that describe constrained 
dynamical systems. For this we first introduce the following notation: 

S : =  { (x ,  t) ~ R~+' I e(x, t) = 0 } .  

S defines the manifold to which the dynamical behaviour of the system is (to be) restricted. 
The point we want to emphasize here is that we look upon a constrained dynamical system as 
a dynamical system that was originally free and that is, given the equations that describe the 
free behaviour, subsequently restricted in some way by constraints. This indicates, in our 
point of view, a restriction to the control that can be applied to the dynamical system. The 
relation between the control F, the trajectory that results if F is applied to the dynamical 
system in Eq. (3.1a), and the manifold S must now be exploited. The result will be a number 
of equivalent formulations of the dynamical system given in Eq. (3.1). As in section 2 we 
denote the partial derivative of P with respect to x by the matrix C. We first give the 
following 

DEFINITION 3.1 (applicable control) [7]. Let G(x) and B(x) be given matrices. Then a 
control F is called applicable if and only if from (X(to), to) ~ S and Gk = B + F it follows that 
(x(t), t) E S, Vt>- t o . 

Details with respect to this definition can be found in [7]. For the present it suffices to 
remark that with the aid of Definition 3.1 a number of equivalent formulations can be given. 

THEOREM 3.2 (formulation of dynamical systems described by a DAE) [7]. Let 
(a) Assumptions A'  and B hold, 
(b) the matrix Z(x ,  t) be such that V(x, t) E S: rank(CZC r) = rank(C),  and 
(c) x o and t o be any vectors such that (x o, to) E S. 

Then the following formulations o f  a dynamical system with equality state-space constraints are 
equivalent: 

(i) 3F  E (R n)r such that x(t) is a trajectory o f  the constrained dynamical system in Eq. (3.1) 

with X(to) = Xo, 
(ii) ::IF,. ~ (Rn) T such that x(t) is a trajectory of  the dynamical system: 

Gk = B + F,. + G z c T ) t z  , 

= - ( c z c  '(CG ' (B  + F.)  - d ) ,  
with X(to) = x o, 

(iii) 3F,, E (R") T, 3A z E (Rm) T such that x(t) is a trajectory of  the dynamical system: 
G~ = B + F,. + GZC~)tz ,  

0 = P(x, t ) ,  

with X(to) = x o. 
The proof of Theorem 3.2 can be found in [7]. 

The parameter Z can be used for optimization purposes and is referred to as a weighting 
matrix. We will call A z a generalized Lagrange multiplier. This name is motivated by the 
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Lagrange multiplier that is present in the classical formulation of mechanical systems. In our 
case, however,  the Lagrange multiplier also depends on the parameter  Z. With the aid of the 
above theorem we now show the actual origin of the stability problems (as discussed in 
Section 2). 

3.3. Solving differential algebraic equations, or, how simple things can go wrong 

When the time-evolution of a DAE is sought one usually must apply a numerical algorithm. 
Since we are dealing with numerical integration routines we must make the following 
assumptions. 

ASSUMPTION B' 
( 3 e > O )  such that (V6 with 0_-<6_-<e): V(x, t )  with IP(x,t)l<-6~rank(C(x,t))=m, 
m<=n. 

Assumption B' reduces to assumption B for 6 = 0, and is necessary for a correct (numerical) 

formulation of our problem. 

ASSUMPTION C 
Let  R denote the stability region of the numerical method under consideration. Let  or(.) 
denote  the collection of eigenvalues of the controlled system. Then Vu E or(.), choose At 
such that u At E R. 

Since all continuous formulations in Theorem 3.2 are equivalent one can choose any one of 
them to find the time-evolution of the DAE.  In the formulation as given in Theorem 3.2(ii) 

the constraint equations are not explicitly present. Indeed, it is this formulation (with 
Z = G - l )  that is commonly used to obtain a discrete set of equations. Since the constraints 
are not explicitly present in this formulation it seems to be a good basis in our search for a 
numerical solution. Unfortunately,  this is not the case as will be demonstrated next. 

Consider the case where one applies the Forward-Euler  integration method to the 
formulation in Theorem 3.2(ii) in order to find the time-evolution of a constrained dynamical 

system. Then one can state: 

Xn+ 1 = X n 4- A t ( G - l ( O n  + Fen ) + gn f TAnz )  , ( 3 . 2 a )  

with 

T -1  -1  
hnZ : =  - ( C n Z n C n )  (CnGn (Bn +Fcn ) - d n ) .  (3.2b) 

However ,  it can be shown that this combination leads to error accumulation once an error  is 
made in the calculation of ) ' ,z,  or if one starts with initial conditions that are not on the 
manifold S. This will be proven next. 

Let  e, denote the error made in the calculation of A,z at time t n. Then the position 
constraint-violation at time tn+ 1 c a n  be calculated. Notation: P, := P(x(t,), tn):= P(x,, tn). 
With neglect of higher-order terms we obtain: 
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P(x,+l ,  tn+l)F=ep(x, + At(Gnl(On +Fcn ) + lnCTnAnz), t n + At) 

V.~Orp. + Px h t ( G ~ ( B .  + b:..) + ZnC~A.z ) + P,.. At 

= en + a t C n ( G ; 1 ( B n  + F,.,,) + z . c T . A . z ) - h t d .  

(3.2b) 
= p + A t C . G ~ a ( B  + F ~ . ) - A t d .  

T r -, - (B. + ~ . . ) -  d . ) -  e.) -atc.z.c.((c.z.c,,) (c°o.' 
T = P, + At C ~ Z , C , e , .  

323 

Of course there are other sources of error as well, for instance, finite word-length of the 
computer.  The above derivation shows that, with the Forward-Euler  integration method, 

T Pn+l = P, + At C , Z ,  Cne" . (3.3) 

Since this is a recursive formula it can be reduced to: 

P.+, = Po + ~ At CiZiCiTei . (3.4) 
i = 0  

From Eq. (3.3) we see that once an error is made in the calculation of the generalized 
Lagrange multiplier the solution is not on the constraint manifold. Let us examine what this 
means for fixed error level e. For simplicity reasons we also assume C and Z to be constant 
matrices. In this special case we obtain from Eq. (3.4): 

Pn+l = Po + t c z c r e  • (3.5) 

Note that it makes no sense letting A t e 0 .  And when t--->~, for example because one is 
interested in an equilibrium solution, one has P(x, t)---> ~. Even if no error  is made in the 
initial conditions, i.e. the initial conditions are on the manifold S, the solution does not 
satisfy the constraint equation throughout the integration interval. 

OBSERVATION 3.3 
In the numerical solution of a constrained dynamical system two sources of error are noted: 

(i) initial conditions. The initial conditions should be such that (X(to) , to) C S. 
(ii) numerical errors. These include, amongst others, errors due to finite word-length, 

calculation errors and integration errors. As a special example of a calculation error we 
mention the possible error made in the calculation of the generalized Lagrange 
multiplier (as discussed above). 

Each of these error  sources can give rise to error accumulation. And if one is dealing with 
digital computers,  one should keep in mind that machine zero ( '0') is not identical to zero 
(0). As a result of this fact we have analytically (with A a linear operator),  

(Ax  = 0) ¢=> (Ax = 0 and Ax(O) = 0) .  (3.6) 
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However, numerically we have no equivalence between their discrete counterparts (with 
Forward-Euler):  

(Ax,+~ = '0') ~5 (Ax,+ 1 - Ax~ = '0' and Ax o = '0 ' ) .  (3.7) 

From Eq. (3.7) it follows that, even if the initial conditions are correct, one cannot 
guarantee that at the next time-step the solution satisfies all equations. Of course, in the case 
where the initial conditions are incorrect surely no such guarantee can be given. This implies 
that one should treat the algebraic equations in an implicit manner. Furthermore, in 
mechanical systems with position constraints the initial values of dependent velocities must 
also be stated correctly. This type of initial condition is referred to as hidden initial 
condition. One can find all hidden initial conditions analytically. However, if one starts with 
a large number of systems, and hence one can introduce a large number of independent 
constraints, one has to find and state a large number of initial conditions. In real world 
applications starting conditions may have been obtained from sensor information. Usually, 
sensor information contains noise, i.e. the information is only accurate to a certain degree. 
An important conclusion therefore is that it is often not possible to obtain exact initial 
conditions; approximate values are the best one can get. Although use of exact initial 
conditions is necessary to obtain a correct analytical solution, for the numerical solution 
however, one has to deal with perturbations. Consequently, any (numerical) solving 
procedure should be sufficiently robust with respect to deviations from the values of the 
exact (hidden) initial values, and by Observation 3.3(ii), it should also be stable with respect 
to errors made during the integration process. 

3.4. Solving differential algebraic equations, or, how problems are avoided 

Careful examination reveals that once an error is made in the solution for the generalized 
Lagrange multiplier error amplification cannot be prevented if Eq. (3.2b) is used. In fact, 
one could say that error accumulation results from the use of incorrect formulas. Equation 
(3.2b) alone is simply not the correct discrete formula to prevent error accumulation. 
Fortunately we can state a remedy. Starting with the appropriate formulation we obtain a 
numerical method that has the property that it is robust with respect to errors in the initial 
conditions (Observation 3.3(i)), and that it is stable with respect to errors made during 
numerical integration (Observation 3.3(ii)) [20]. Furthermore, this numerical method does 
not involve any (additional) iteration process. 

Opposed to the sequence of steps that is applied in solving a DAE in the classical manner, 
as outlined in the previous section, we propose a different sequence. This sequence of steps 
reads: 

- s t a r t  with the appropriate set of continuous equations. (The meaning of the word 
'appropriate' will be explained shortly); 

- discretise the set of continuous equations; 
- s o l v e  the discrete set of equations for the Lagrange multiplier; 
- c o m b i n e  and solve the resulting equations. 

Note that, in contrast to the classical way, in this sequence the equations are solved for the 
Lagrange multiplier only after they have been discretised. We remark that this sequence of 
steps can be applied successfully to more problems [21]. 
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Assume, for simplicity reasons, that the matrices C, d, and Z are constant. Consider the 
discrete DAE; obtained from Theorem 3.2(iii), by application of Forward-Euler: 

xn+ , - x ,  = At(G~1(B,  + Fc, ) + ZCrA~z) , (3.8a) 

0 = P.+, . (3.8b) 

Note that we now treat the constraint equation in an implicit manner. 
The idea now is to obtain a discrete formula for A,z directly from Eq. (3.8), rather than 

using the continuous expression in Theorem 3.2(ii). To distinguish the Lagrange multiplier in 
Eq. (3.2b) from the discrete generalized Lagrange multiplier here derived we denote the 

d latter by A,z. This implicitly means that the expression for the discrete generalized Lagrange 
multiplier depends on the integration method used to find the time-evolution of a DAE. 
However, we will show that one single expression for the discrete generalized Lagrange 
multiplier can be used in combination with a number of different integration methods. 

PROPOSITION 3.4 (discrete generalized Lagrange multiplier). Let assumption A', B'  and C 
hold. Let the matrices C, d and Z be constant. And  let the matrix Z(x,  t) be such that 
V(x, t) E S: rank(CZC r) = rank(C). Then with the Forward-Euler integration method the 
discrete generalized Lagrange multiplier Adz takes the following form: 

Adz = - ( C Z C T ) - I ( C G n I ( B n  + Fcn ) - d + P h I A l ) ,  ( 3 . 9 )  

-1 T d  
Proof. From Eq. (3.8a) we obtain: xn+ 1 = x n + At(G~ (B n +Fcn ) + Z C  Anz ). Substitu- 

tion of this equation in Eq. (3.8b) gives 

Pn+l = P(xn + A t (G~ ' (B  n + Fc, ) + Z~CrAa~z), t~ + At) 

= P(xn, t , )  + C At(GSI(Bn + F~)  + z~cTAdnz) + P,,, At 

-1 T d  = P~ + At CG n (Bn + Fc,) + At CZC A,z - At d . 

We demand that at tn+ 1 the constraint equation on position level holds, so from 0--- en+l, it 
T d follows that At CZC A nz = -P~ - At CG~I(Bn + Fen) + At d. Due to our assumptions CZC ~ 

T - 1  - 1  is non-singular, so A~z = - ( C Z C  ) (CG,  (Bn + Fc, ) - d + P./at). 
End of proof of Proposition 3.4. • 

If we compare Eq. (3.2b) with Eq. (3.9) we have 

T d T 
CZC Anz - (3.10) = CZC Anz P J A t .  

As a result we have that the equivalent continuous formulations of Theorem 3.2 do not yield 
equivalent discrete formulations. This at first sight surprising result is the true origin of the 
stability problems discussed in Section 2. By use of the appropriate continuous formulation, 
i.e. the formulation in which the constraint is still present, stable numerical integration can 
be attained. In Section 3.3 we showed that with the classical Lagrange multiplier error 
accumulation cannot be avoided. Performing the same analysis that lead to Eq. (3.5) but 
now with Az d instead of A z gives (for constant C, Z and e) 
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Pn+l = At CZCre  . 

No error accumulation can take place now. Indeed, if At---~0 one has Pn+l---~0, as desired. 
Another interesting result of Proposition 3.4 is that the expression in Eq. (3.9) for the 

discrete generalized Lagrange multiplier A~z , although it is derived with the Forward-Euler 
integration method and for linear constraints, is useful in combination with other integration 
routines and for non-linear constraints as well. Furthermore, it is not the accuracy of the 
derivation in Proposition 3.4 that is important. The mere solution of the discrete Lagrange 
multiplier on the interval [t,, tn+l] from 

CZCTA d z = d - C G - I ( B  + Fc) - Pn/At (3.11) 

in the set-points needed by the ODE-solver and the subsequent use of this Lagrange 
multiplier in combination with the characteristics of the ODE solver" determines the accuracy 
of the numerical solution of the DAE. 

Clearly Eq. (3.11) can be solved in a number of ways. For example, one can apply a 
singular value decomposition, one can invert the leading matrix, or one can solve the 
equation with an iteration process [22]. In the latter case the iteration process is ended once 
the desired accuracy is attained. Usually this desired accuracy is related to the order of the 
numerical integration routine used to obtain a solution for the ODE in Eq. (3.8a). We 
remark that these numerical integration routines yield only approximations of the analytical 
solution and are in this sense a source of errors by themselves. The most important 
observation we make here is that Eq. (3.11) can be solved for h~ with the accuracy one 
needs. In the extreme, one can solve the equation with 'machine accuracy'. 

For future reference we identify the term Pn/At as a compensation term. This name is 
motivated by the observation that Pn represents not only the value of the constraint but at 
the same time represents the constraint violation. So the presence of the term P~/At in Eq. 
(3.9) can be interpreted as 'compensation' of errors made at time t~. Note however, that this 
compensation term is not added in a heuristic manner but instead follows from a precise 
mathematical derivation. 

We would like to emphasize that the use of the discrete generalized Lagrange multiplier 
h~z, i.e. including the compensation term, does not yield numerically stiff equations when 
the time step is reduced. This can be seen from Eq. (3.8a). In that equation the Lagrange 
multiplier is multiplied again with At. As a result, the term At in the denominator of the 
compensation term is cancelled. Note also that application of the discrete generalized 
Lagrange multiplier does not alter the dynamics of the system. 

3.5. Stable numerical integration o f  dynamical systems described by differential algebraic 

equations 

We now return to the case of nonlinear constraints, i.e. the case where the constraint 
Jacobian matrix C is state and time dependent. Let the continuous set of constrained 
equations of motions be given by: 

G2 = B + F c + GZCrAz  , (3.12a) 

0 = P(x, t ) .  (3.12b) 
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Due to the nonlinear character of the constraints we need one additional 
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ASSUMPTION D 
The time-step At and the constraint Jacobian matrix C satisfy the conditions on the interval 
[t., t.+l], for all n, for all steps of the Newton-Raphson process to converge. These 
conditions can be found in [23]. 

We are pursuing an easy to verify mathematical condition that relates Assumption C and 
Assumption D. For real-world constraints, however, the time-step that validates Assumption 
C, usually also validates Assumption D. 

T H E O R E M  3.5 (stable numerical integration of DAEs with Forward-Euler). The system 
given by Eq. (3.12) can be solved in a stable manner with Forward-Euler if: 

(i) assumptions A', B', C and D hold, 
( ii ) we define the discrete generalized Lagrange multiplier on the interval [ tn, t, + 1] as in Eq. 

(3.11), and 
(iii) the error in the initial condition is such that P0 = O(At). 
Furthermore, i f  the discrete generalized Lagrange multiplier is solved with sufficient accuracy, 
one has: P(xn+i, tn+1) = '0 '+  O((At)2). 

Proof. 

P.+1 = P(x.+l,  t.+i) = P(x.  + A t (G~ ' (B .  + I'~.) + Z.C~Adz), t. + At) 

P(x. ,  t .) + C. -1 r d = At (G,  (B,  + Ft, ) + Z , C , A , z  ) - d, At + O((At) 2) 

P. +At  -~ r d = C.Gn ( B . + F c . ) + A t C . Z . C . A . z - A t d . + O ( ( A t )  2) 

(assuming the Lagrange multiplier is solved with machine accuracy) 

T T - 1  1 = P. + At C . G ~ ' ( B .  + Ft. ) + At C . Z . C . ( C . Z . C . )  (d,, - C . G .  (B.  + F~.) 

- P . / A t )  - A t  d .  + '0' + O((At) 2) = P.  - e .  + '0' + O((At) 2) 

= ' 0 ' +  0 ( ( 6 0 2 ) .  

End of proof of Theorem 3.5. • 

Assumption (iii) (with the notation adapted from [24]) is to validate the Taylor approxi- 
mation in the proof. What if this assumption does not hold and the initial constraint violation 
is significant? This case is also covered by the use of the discrete generalized Lagrange 
multiplier. 

Evaluation of Pn+l using the formulas for Forward-Euler and Adz yields: P~+I = 
T T - 1  

P(x,  - Z , ,C,(C,  ZnC, )  P, + O(At)). In this formula the first step of a Newton-Raphson 
iteration process can be recognized. This is where Assumption D explicitly comes into focus. 
For other ODE-solvers the situation is more complicated as intermediate points enter the 
discussion. Simulation results, however, clearly show that even for large initial violations the 
error is largely reduced within a few time-steps in case of a higher-order ODE-solver (see 
Section 5). Since with linear constraints no Taylor approximation is necessary, only one 
integration step is needed to reduce the constraint violation. And, if desired, for the discrete 
solution accuracy up to machine zero can be attained, independent of the applied ODE- 
solver! Conditions under which convergence of the numerical algorithm is attained, given 
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incorrect initial values, is an ongoing research item. Use of the discrete generalized Lagrange 
multiplier and a standard ODE-solver yields numerical methods that offer error reduction 
and avoidance of error accumulation in one single algorithm. 

Use of the discrete generalized Lagrange multiplier as solved from Eq. (3.11) yields, in the 
case of nonlinear constraints, a discrete solution of the DAE that satisfies the nonlinear 
constraint equation up to a certain accuracy. This means that if some derivative of the 
constraint equation is linear, say the kth, one can take a kth order ODE-solver in order to 
obtain Pn.l = '0'. Application of a lower-order numerical method, say of order p, still yields 
Pn+l - - ' 0 '+  O((At) p÷l). This observation, of course, only holds for the discrete solution. In 
the linear case the solution xn. 1 is such that P~ .~ --'0'. The difference between the discrete 
solution and the exact solution is still related through the order of the truncation error of the 
ODE-solver. 

In [20] theorems are presented for a number of explicit ODE-solvers, and we give 

CONJECTURE 3.6 (stable numerical integration of DAEs with Runge-Kutta-k). The 
system given by Eq. (3.12) can be solved in a stable manner with a Runge-Kutta-k formula 
if: 

(i) assumptions A', B', C and D hold, 
(ii) we define the discrete generalized Lagrange multiplier on the interval [tn, tn+l] as in 

Eq. (3.11), and 
(iii) the error in the initial condition is such that P0 = O(At). 
Furthermore, if the discrete generalized Lagrange multiplier is solved with sufficient 
accuracy, one has: P(xn+ 1, t n + l )  = ' 0 '  + O((At) ~+1) after k steps. 

For k = 2 and k = 4 the proof can be found in [20]. Also the case of explicit multi-step 
methods is discussed in [20]. 

Summarizing our results so far: for explicit integration methods the expression for the 
discrete generalized Lagrange multiplier suffices to obtain a stable numerical algorithm. No 
need exists to stabilize the integration process any further. 

4. Stable numerical integration of mechanical systems subject to equality state-space 
constraints: theory 

The motion of a constrained mechanical system is to be restricted to the manifold defined by 
the constraint equations. We have demonstrated in Section 3 that one can use the freedom 
offered by the control to accomplish this in case of a DAE in combination with an algebraic 
constraint. The point we want to emphasize here is that a constrained mechanical system can 
be (re)formulated to fit into this framework. This gives the opportunity to use the theory 
developed in Section 3. This in turn leads to algorithms that allow stable numerical 
integration of the equations that describe constrained mechanical systems. 

Recall the constrained equation of motions for a mechanical system with state-space 
constraints from Section 2: 

M2 = B + F ,  (4.1a) 
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as the second-order O D E  describing the mechanical system, and 

0 = P(x,  t ) ,  (4. lb) 

as the constraint equation. 
Our first goal is to find a continuous time description of constrained mechanical systems in 

which no elimination of dependent variables has taken place. In order to be able to compare 
the results derived in this section with the classical formulation in Eq. (2.4) we will denote 
the control by F instead of Fc as done in Section 2. An equivalent first-order description of 
the system in Eq. (4.1) is given by: 

i = y ,  (4.2a) 

M f = B + F ,  (4.2b) 

0 = P(x, t ) ,  (4.2c) 

0 = Cy- d. (4.2d) 

Recall that C, d, denote the partial derivative of P with respect to x, t, respectively. Note 
that in this formulation Eq. (4.2d) is redundant as it directly follows from (4.2a) and (4.2c). 
However ,  the presence of this equation is essential for our purposes. 

We must redefine the constraint manifold S as: 

S := {(x, y, t) E R  2"+1 I P(x, t) = 0  and C(x, t)y = d(x, t )}.  

Next we present the (partial) analogue of Theorem 3.2 for constrained mechanical systems. 
The original and complete version can be found in [7]. 

T H E O R E M  4.1 (formulation of constrained mechanical system) [7]. Let 
(a) Assumptions A and B hold, 
(b) X and Y be any matrices such that V(x, y, t ) C S ,  rank(CXCT) = r a n k ( C ) =  

rank( CYCT) ,  and 

(c) xo, Yo, and t o be any vectors such that (x o, Yo, to) E S. 
Then the following formulations of  a mechanical system with equality state-space constraints 
are equivalent: 
(i) 3 F  ~ (R") r such that (x(t), y(t)) is a trajectory of  the dynamical system in Eq. (4.2) with 

(x(t,,), y(t,,)) = (x0, Y0), 
(ii) 3 F  c E (R") r, 3 #  x C (Rm) r and 3A r E ( R ' )  r such that (x(t), y(t)) is a trajectory o f  the 

dynamical system: 

i = y + X C  7tz x , 

My, = B + F + MYCrAy , 

0 : P(x, t ) ,  

O = C y - d ,  
with (X(to), y(to) ) = (Xo, Yo)" 

The proof of Theorem 4.1 can be found in [7]. 
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The presence of 2ty in formulation 4.1(ii) is not that surprising since in the classical 
formulation also a Lagrange multiplier is present, although less general since there is no free 
matrix Y (see Eq. (2.4)). However, the generalized Lagrange multiplier P-x is new and no 
(simplified) analogous Lagrange multiplier is present in the classical approach. The question 
now is: how did we obtain this generalized Lagrange multiplier and how did we obtain the 
expression xcTIzx  ? Again, this expression is not obtained in a heuristic manner but follows 
from a precise and non-trivial mathematical derivation. The actual derivation is beyond the 
scope of this paper and for details we refer to [7]. Still some remarks can be made. The basic 
idea is to first introduce an auxiliary control at position level. For this it is necessary to have 
a first-order formulation. Next we apply Theorem 3.2 and subsequently remove the degrees 
of freedom introduced by the control at position level. The resulting equations now contain 
the generalized Lagrange multiplier /z x (with the free parameter X). From the proof of 
Theorem 4.1 it follows that analtyically /z x = 0. However, due to integration errors (see 
Observation 3.3), this is not true for the numerical solution. This can be used to compensate 
for these errors, and enables one to find the solution of constrained mechanical systems in a 
stable manner. 

The idea, again, is to obtain expressions for the discrete generalized Lagrange multipliers 
by first discretizing the continuous set of constrained equations of motion. And if we treat 
the ODE in an explicit manner and the constraint equations in an implicit manner the 
following can be obtained. The expressions for the discrete generalized Lagrange multipliers 
on the interval It,, t,+~] become: 

]'l"xd = - ( c x c T ) - I ( C y  - d + P, /At)  (4.3a) 

h d = - ( C Y C ~ ) - ~ ( C M  I(B + Fc) + C y -  d + (C,y ,  - d , ) / A t ) .  (4.3b) 

We have obtained two compensation terms, namely Pn/At in Eq. (4.3a) and ((Cny, - d , ) / A t  
in Eq. (4.3b). It is these compensation terms that will prove to be essential to prevent error 
accumulation. 

Next we state our main result with respect to stable numerical integration of mechanical 
systems with equality state-space constraints. We restrict ourselves to the numerical al- 
gorithms discussed in Section 3. Observe that the application of explicit one-step or 
multi-step methods decouples the underlying ODE into two discrete equations on each 
individual time interval. Hence they only interact in the set of discrete points and can be 
solved separately. For example, with the Forward-Euler integration method the set of 
discrete equations now reads: 

T d 
Xn+ l = X n 71- At( y n + Xn Cnlxx, ) , 

-1 T d 
Yn+l  : Yn + A t ( m n  (On + F c n )  + rnCnl)kyn)  ' 

(4.4a) 

(4.4b) 

Furthermore, from Eq. (4.3) and Eq. (4.4) it follows that reducing the time-step does not 
lead to numerically stiff equations, in contrast to Baumgarte's stabilization technique (see 
Section 2). These observations are used in the following: 

T H E O R E M  4.2 (stable numerical integration of constrained mechanical systems) [20]. The 
system given by Theorem 4.1(ii) can be solved in a stable manner with 
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- Forward-Euler, 

- Runge-Kutta-2, and 
- Runge-Kutta-4 if: 

( i ) Assumptions A ,  B', C, and D hold, 
(ii) we define the discrete generalized Lagrange multipliers as in Eq. (4.3) on the interval 

[t,,, t~+l], and 
(iii) the errors in the initial conditions are such that Po = O(At) and CoY o - d o = O(At). 
Furthermore, i f  the discrete generalized Lagrange multipliers are solved with sufficient 
accuracy, after k steps 

P(x,,+1, t,,+l ) = ' 0 ' +  O((At)k+'),  and 

- d . + ,  : ' 0 ' +  

with k the order of the applied numerical method. 
The proof can be found in [20]. 

In Section 2 we saw that simulation of mechanical systems with position constraints can lead 
to unstable behaviour. By Theorem 4.2, simulation of constrained mechanical systems can be 
performed in a stable manner also in the case where the constraints are originally on position 
level. No stability problem occurs, and, also important, use of the ODE-solvers in Theorem 
4.2 results in numerical methods that are also robust with respect to errors in the initial 
conditions. 

In [20] also explicit multistep methods are shown to be useful. 
The order of the applied numerical algorithm as predicted by the theory was also verified 

by simulation studies. The results can be found in the next section. 

5. Stable numerical integration of mechanical systems subject to equality state-space 
constraints: simulation 

In this section the simulation results are presented. In [20] a number of test cases are 
discussed. All test cases involve the simulation of a mechanical system with several 
constraints superimposed on this mechanical system. In this paper, due to space limitations, 
we will illustrate the theory with respect to stable numerical integration with the aid of a 
simple mechanical system: a single planar pendulum that consists of a point-mass m swinging 
on an inelastic rod of length l (see Fig. 1). A DAE description of this system can be obtained 
as follows. First we model the point-mass as a free-falling body. Let (x~, x2) denote the 
Cartesian coordinates of the point-mass. The equations of motion read 

mY 1 = 0 ,  (5.1a) 

m2e = - mg . (5. lb) 

Here g represents the gravity vector. The superimposed constraint equation now reads: 

0 = x21 + x ~ -  1. (5.2) 



332 A . A .  ten D a m  

This equation expresses that the motion of the point-mass is to be restricted to the unit 
circle, i.e. the length of the rod equals 1. In order to apply the theory one must have an 
equivalent first-order description. For this we introduce the notation: ))1 = xl,  and Y2 : X2" 
With this notation, differentiation of the constraint equation results in: 

0 = 2 x l y  1 + 2 x 2 y  2 . (5.3) 

Hence the constraint Jacobian matrix C equals (2x 1 2x2). Application of Theorem 4.1, with 
the control set to zero, and with X = I and Y = M 1, now yields: 

22 Y2 + Cr~ ' (5.4a) 

= + C ~  
0 m / \ Y 2 /  - m g  ' 

(5.4b) 

and the constraint equations as in Eq. (5.2) and Eq. (5.3). Our claim of stable numerical 
integration by starting with the appropriate continuous formulation is demonstrated with the 
aid of these equations. 

In the simulation studies described here the following combinations of Lagrange multi- 
pliers are used (with simplified notation): 

(A) A = - ( C M  1 c T ) - I ( C M - I ( B  + F,.) + t~y - d),  /x = 0; the classical approach to simula- 
tion, and 

(B) A as in Eq. (4.3b) and/x  as in Eq. (4.3a); the combination that makes full use of the 
theory here developed. 

For the simulation studies use was made of the NAG library [25]. As ODE-solver a 
Runge-Kut ta -Merson  method, also known as Runge-Kut ta-Fehlberg,  was used. Inversion 
of the matrix C M - 1 C  r was performed in a direct manner. Unless stated otherwise all 
integration time-steps where chosen as At = 1/100 and the integration interval as [0, 1]. 

First we discuss the case where all initial conditions are in agreement with the constraint 
equations. Second, we introduce errors in the position constraint while the velocity con- 
straint is still initially satisfied. Third, we treat the case where both the position and the 
velocity constraint are not initially satisfied. 

We start with the case where all initial conditions are in agreement with the constraint 
equations. At time t - - 0  we take (Xl,X2)= (1,0) and (Yl, Y2)=(0 ,0 )  • First we take 
combination (A), corresponding to the classical approach to simulation (but without 
additional stabilization as discussed in Section 2). The constraint violations are depicted in 
Fig. 3. The constraints on position level as well as on velocity level are satisfied with error 
level E-7. The oscillatory behaviour of the constraint violations is due to the oscillatory 
behaviour of the pendulum itself. 

If we now compare the error level obtained from a simulation by the classical way (Fig. 3) 
and the error level obtained by using the theory here developed (Fig. 4) we can deduce the 
following. As far as the error in the velocity constraint is concerned: use of our formulation 
reduced the error. In Fig. 3 the velocity constraint violation varies between -0.4E-7 and 
0.4E-7, whereas in Fig. 4 this violation varies between -0.2E-8 and 0.4E-8. Hence a factor 
10 is attained. A more dramatic reduction is obtained for the position constraint violation. In 
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Fig. 3. Constraint violations when simulation is performed in the classical manner. The initial conditions satisfy the 
constraint equations. 
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Fig. 4. Constraint violations when simulation is performed with the full model: both Lagrange multipliers and both 
compensation terms are used. The initial conditions satisfy the constraint equations. 

Fig. 3 the posit ion constraint violation varies between 0 and -0 .7E-7 .  Whereas the situation 
depicted in Fig. 4 shows that the position constraint violation varies between - 0 . 4 E - 9  and 
0.4E-9.  That is, we gained two orders with respect to the violation of the position constraint. 

Second,  we discuss the case where the initial conditions are not correct. We start with 
(xl ,  x2) = (2, 0) and (Yl,  Y2) = (0, 0). So, the position constraint is not initially satisfied. This 
amount  of  violation may not be very likely in real world applications where initial conditions 
are obtained from sensor information. Here it serves to show the difference between 
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simulations performed in the classical manner and simulations performed with the full model 
as developed in this paper. In Fig. 5 the behaviour of the point-mass is depicted (dashed line) 
when simulation is performed with combination (A), i.e. the classical manner. No additional 
stabilization technique (see Section 2) is applied. Instead of being constrained to the 
unit-circle the point-mass is, and remains, on a circle with radius two: the error due to the 
initial conditions is not reduced. So correct initial conditions are essential in the classical 
approach to simulation as can also be seen from Eq. (3.5) and Observation 3.3. If we 
perform simulations with the full model as developed in this paper (combination (B)) we 
obtain the behaviour depicted in Fig. 5 as a solid line. Note that initial position is: 
(xl, x2) = (2, 0). Apart from this initial error the point-mass is constrained to the unit circle 
and behaves as a pendulum. The accompanying constraint violations (apart from the first 
three set-points) are depicted in Fig. 6. Even though the position constraint is represented by 
a nonlinear equation, within the first integration step the initial error is greatly reduced. 
Apart from the first three time-steps the same error functions are obtained as those from a 
simulation with correct initial conditions, see Fig. 4. 

We conclude this section with a test case in which the initial conditions violate the position 
constraint as well as the velocity constraint. As starting conditions we take: (x 1, x2)= 
(1, 1/100) and (yl ,  Y2) = (1, 1/10). Note that this implies that the violation with respect to 
the desired radius (1) is 1/10000, so the position constraint violation is indeed small. This 
test case was also used in Section 2 (Fig. 2) to show that a stability problem indeed exists 
when simulations are performed in the classical manner. With combination (A), we obtain 
the dynamics behaviour depicted as the dashed line in Fig. 2. Compared to the desired 
dynamics behaviour (the solid line) we conclude that not only the point-mass is not on the 
unit circle, but also that the position constraint violation increases with time. This test case 
shows why, when the classical solution method is applied, considerable effort is put in the 
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Fig. 5. The dynamics behaviour obtained from a simulation performed in the classical manner (dashed line) versus 
the dynamics behaviour obtained with the use of the model developed in this paper (solid line). The initial position 
of the point-mass equals (2, 0) and is not compatible with the constraint equation. The present model follows the 
correct constraint. 
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Fig. 6. Cons t r a in t  v iola t ions  w h e n  s imulat ion is p e r f o r m e d  with the full m o d e l  and with incompa t ib le  initial 

condi t ions  (see Fig. 5).  T h e  cons t ra in t  violat ions shown exhibit  the s a m e  character is t ics  as those dep ic ted  in Fig. 4. 

In  this f igure it c anno t  be  seen  tha t  we s tar ted  with incorrec t  initial condit ions.  

search for stabilization methods. If one applies the theory developed here the improvement 
is clear. The dynamics behaviour is plotted as a solid line in Fig. 2, leaving out the first 
discrete set points. As can easily be seen, we now obtain the desired behaviour. The error 
functions are not plotted but are similar to those given in Fig. 6. 

Table 1. Verif icat ion of  the  o r d e r  of  the  numer ica l  a lgor i thm as p red ic ted  by the theory .  T h e  va lues  wi thin  the  

r e c t a n g u l a r  boxes  are  close to the p red ic ted  va lue  of  32. 

Position constraint violation 

I n t e g r a t i o n  Step: 0.0625 0.03125 0.015625 

T Viola t ion  ./. Violat ion ./. Viola t ion  

0.000 0 . 0 0 0 0 E  + 0 0  - 0 . 0 0 0 0 E  + 0 0  - 

0 . 2 5 0  - 0 . 1 1 0 7 E  - 05 28.6 - 0 . 3 8 6 4 E  - 07 30.7 

0 .500 - 0 .4243E - 05 37.1 - 0 .1143E - 06 35.4 

0 .750 - 0 . 2 4 5 9 E  - 05 25.1 0 .9800E - 07 29.4 

1.000 0 .5951E - 06 31.7 0 .1872E - 07 32.8 

1.250 - 0 . 2 4 0 2 E  - 08 5.2 - 0 . 4 6 3 9 E  - 09 22.7 

1.500 - 0 . 2 1 8 2 E  - 05 30.2 - 0 . 7 2 2 7 E  - 07 31.5 

1.750 - 0 . 3 0 0 2 E  - 05 47.2 - 0 . 6 3 5 6 E  - 07 42.9 

2.000 0 .2685E - 05 28.5 0 .9417E - 07 30.9 

0 .0000E + 00 

- 0 . 1 2 5 8 E  - 08 

- 0 . 3 2 3 1 E  - 08 

0 .3329E - 08 

0 .5716E - 09 

- 0 . 2 0 4 7 E -  10 

- 0 . 2 2 9 7 E  - 08 

- 0 . 1 4 8 3 E  - 08 

0 .3048E - 08 

Velocity constraint violation 

I n t e g r a t i o n  Step: 0.0625 0.03125 

T Viola t ion  ./. Viola t ion ./. 
0.015625 

Viola t ion  

0.000 0 .0000E + 00 - 

0 .250 - 0 . 1 3 5 7 E  - 04 30.7 

0.500 0 .4853E - 05 11.7 

0.750 0 .1598E - 04 59.6 

1.000 - 0 . 9 5 2 5 E  - 05 32.6 

1.250 - 0 . 4 2 3 9 E  - 06 16.3 

1.500 - 0 . 1 9 0 3 E  - 04 33.3 

1.750 0 .2552E - 04 25.6 

2 .000 - 0 . 1 8 7 6 E  - 05 7.7 

0 .0000E + 00 

- 0 . 4 4 2 6 E  - 06 31.7 

0 .4155E - 06 24.5 

0 .2682E - 06 57.6 

- 0 . 2 9 1 9 E  - 06 32.7 

- 0 . 2 6 0 5 E  - (17 26.3 

- 0 . 5 7 1 4 E  - 06 33.3 

0 .9943E - 06 29.8 

- 0 . 2 4 4 5 E  - 06 23.8 

0 .0000E + 00 

- 0 . 1 3 9 7 E  - 07 

0 .1695E - 07 

0 .4659E - 08 

- 0.8928E - 08 

- 0 . 9 9 0 0 E  - 09 

- 0 . 1 7 1 9 E  - 07 

0 .3334E - 07 

- 0 . 1 0 2 5 E  - 07 
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The simulations have been extended to over 100 periods, and no error amplification took 
place. We would like to emphasize that compared to the classical simulations, no additional 
computational effort is necessary to obtain these improvements. 

The case where one starts with correct initial conditions was also used to verify the order 
of the constraint violation, as predicted by Theorem 4.2. Runge-Kutta-Merson uses a 4th 
order Runge-Kutta integration method. Hence by Theorem 4.2 we expect to see a factor 32, 
being 25, when we reduce the time-step At by a factor two and take the quotient of the 
constraint violations at the same discrete time-point. The results are depicted in Table 1. The 
factors within the rectangular boxes are clearly in agreement with the theory here developed. 

In [20] also a pair of double pendulums, which allow for the interpretation of a pair of 
two-link rigid manipulators, was simulated. Several nonlinear constraints were superimposed 
upon the system. In [26] the theory here developed was applied to simulate a constrained 
(6-DOF) manipulator with gearbox flexibility. In each of these cases the simulation results 
were in agreement with the theory: no error accumulation took place and the correct 
dynamical behaviour was obtained. 

6. Concluding remarks 

We showed that the problems with respect to stable numerical integration of constrained 
dynamical systems originate from the transformation of a set of continuous equations to a set 
of discrete equations. The stability problem does not originate from the additional constraint 
equations themselves. A remedy was stated for the stability problem. This remedy involved 
solving the combination of differential and algebraic equations only after they have been 
discretized. It was shown that the resulting set of discrete equations differs from the set of 
equations obtained if the classical approach to constrained dynamical systems is applied. 

Use of the discrete equations here derived, in combination with standard (explicit) 
ODE-solvers, such as Forward-Euler, Runge-Kutta and multistep methods, showed that 
stable numerical integration can be attained. Features of the method are that no additional 
iteration process is necessary, the computational effort is not increased, non-linear 
rheonomic constraints can be used, and decreasing the time-step does not yield numerically 
stiff equations. Furthermore, for linear constraints, constraint violations can be reduced up 
to machine accuracy, while for non-linear constraints the constraint violation is related to the 
characteristics of the ODE-solver that is used. The theory was extended to the case of 
mechanical systems with holonomic constraints. Also in this case no additional stabilization 
is necessary in contrast to the classical approach. In addition, the derived numerical method 
is robust with respect to errors in the initial conditions and is stable with respect to errors 
made during the integration process. Simulation studies were performed based on the theory 
developed here. All simulation results were in agreement with the theoretical results. 
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